
 

Abstract -- 3G wireless systems such as 3G-1X, 1xEV-DO and 1xEV-DV provide support for a variety of high-speed data 

applications. The success of these services critically relies on the capability to ensure an adequate QoS experience to users 

at an affordable price. With wireless bandwidth at a premium, traffic engineering and network planning play a vital role in 

addressing these challenges. We present models and techniques that we have developed for quantifying the QoS perception 

of 1xEV-DO users generating FTP or Web browsing sessions.  We show how user-level QoS measures  may be evaluated by 

means of a Processor-Sharing model which explicitly accounts for the throughput gains from multi-user scheduling. The 

model provides simple analytical formulas for key performance metrics such as response times, blocking probabilities and 

throughput.  Analytical models are especially useful for network deployment and in-service tuning purposes due to the 

intrinsic difficulties associated with simulation-based optimization approaches. We discuss the application of our results in 

the context of Ocelot, which is a Lucent tool for wireless network planning and optimization. 

 

Keywords -- High-speed wireless data, user-level QoS, network optimization, blocking performance, throughput performance, 

cdma2000, traffic engineering, Processor-Sharing model, page response times, Ocelot planning tool. 

 

Introduction 

The highly anticipated introduction of wireless data services over 3rd-generation (3G) wireless networks is 

expected to raise new challenges in planning, deployment and operation of these networks. IP packets, the 

pervasive mode of data communication in wired networks, is likely to carry over to wireless data networks, 

bringing with it unique problems of scheduling packet transmissions under the widely varying channel conditions 

typical of most real environments. Channel-aware and traffic -aware scheduling, see e.g. [AKRSVW2000, 

BBGPSV2000, BV2001, BW2002, JKKS2002, JPP2000], that exploits the delay tolerance of data is a key source 

of performance enhancement for wireless data networks. Higher layers of flow control (hybrid ARQ, TCP/IP), 
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the presence of fewer users, who have more diverse, bursty and less predictable  traffic behavior than voice users, 

and the need to support various types of QoS requirements are additional factors that render the control and 

prediction of data performance significantly more complex in these systems. Hence, optimal planning of these 

networks is considerably more complex than conventional voice networks, and requires development of novel 

techniques. The challenge is particularly acute during application to actual customer networks, which deviate 

significantly from the idealized “flat earth, uniform traffic density, and hexagonal cell geometry” networks often 

used for theoretical analyses. 

 

Planning wireless networks with the Ocelot tool  

 

Ocelot is a predictive optimization tool  developed at Bell Labs to enhance the performance of wireless networks. 

It originated more than four years ago with 2nd-generation (2G) voice-only wireless networks (e.g., IS-95, GSM, 

and IS-54/136) as the intended application.  Ocelot solves an optimization problem by adjusting various base station 

parameters (e.g., antenna azimuth and down-tilt angles, and sector power levels) in order to maximize the 

coverage and capacity of the network, subject to user-specified QoS constraints.  Ocelot has been successfully 

applied during the network design stage, as well as to operational networks for post-deployment optimization. In 

addition to a significant reduction in manual planning, substantial gains in performance have also been obtained 

through Ocelot optimization in more than 100 metro markets worldwide. 

 

For 2G systems there is only a single service (voice) whose primary QoS measure is blocking. With the advent of 

3G networks, however, the complexity has grown substantially. Now network planning must also contend with 

data services, with their more complex QoS requirements. Over the last two years, several novel features have 

been introduced into Ocelot specifically to address data services within 3G systems.  Those features specific to 

combined voice plus data networks such as 3G-1X and UMTS will be described elsewhere. This article 

specifically focuses on the efforts at Bell Labs to enhance Ocelot for 3G data-optimized networks such as 1xEV-

DO [TE]. For application to 1xEV-DO, it was necessary to select appropriate traffic models for FTP, Web 

browsing, and other common data applications, as well as develop analytical models to predict scheduler 

performance and the QoS for data users. Given the complexity of the goal, several simplifying assumptions and 

approximations are necessary to obtain a tractable formulation, and due care must be exercised to retain the 

essential features necessary for realistic modeling of these networks. These aspects are described in detail in the 

rest of this paper.  

 

The simplified flow chart below illustrates the salient modules of Ocelot and their inter-relations.  

 



 

Figure 1.  Ocelot optimization flow chart 

Observe that the major difference between the 2G (Voice) and 3G (Voice plus Data) versions is the addition of 

data-specific QoS evaluations in the latter, while the former consists mainly of blocking evaluation based on 

standard circuit-switched models. The input data to Ocelot includes terrain and propagation information, base 

station locations, traffic density proportions within each elementary region of the covered area, in addition to traffic 

characteristics and QoS requirements of the different traffic classes served by the network. Ocelot then proceeds 

iteratively by adjusting the antenna parameters at the base stations to optimize coverage or capacity for the current 

traffic density, followed by global scaling of the traffic (for its network capacity determination) followed by re-

optimization, and so on. At the current stage, this goal has been achieved only in part for the 1xEV-DO version of 

Ocelot, in the sense that the tool currently performs the QoS evaluations for fixed traffic densities, and does not 

optimize the parameters. Future work will complete the loop, and is expected to provide important insights into the 

differences between planning voice and data networks. 

 

Modeling 1xEV-DO traffic and QoS 

 

From the above description of network planning and Ocelot, it is clear that the major additional elements required 

for planning 1xEV-DO networks are traffic and QoS models for 1xEV-DO connections. Most of the remaining 

part of this paper is hence devoted to these topics. It is well-known that, unlike voice, data traffic is very diverse 

and complex. Different applications may not only have drastically different traffic characteristics, but may also 



extremely diverse QoS requirements. In order to describe the most fundamental differences, it is convenient to 

make a broad distinction between streaming traffic  and elastic traffic . Streaming traffic is produced by audio and 

video applications for both real-time communication and reproduction of stored sequences (or ‘traces') [3GPP2A]. 

Elastic traffic, on the other hand, results from the transfer of digital documents such as Web pages, files and e-

mails, where the transmission rate is adaptable depending on the levels of congestion in the network. 

 

For streaming traffic, small packet-level delay and low loss are crucial QoS requirements. For elastic traffic, on the 

other hand, it is not so much the delay of individual packets that is important, but the total transfer delay of the 

document that determines the QoS as perceived by the users. In this paper, we focus on the category of elastic 

traffic. A substantial majority of web-browsing and file transfer (FTP) traffic fall in this category, which is 

expected to be the dominant mode of data service usage in the near future. In the conlusion section, we will briefly 

comment on extensions to handle streaming traffic, which requires distinct modeling and analysis methods. 

 

The analysis presented in this paper specifically models the QoS performance offered to elastic users in a network 

of cells that use the 1xEV-DO air-interface standard [TE]. The common scheduling mechanism implemented in 

the 1xEV-DO system is the so-called Proportional Fair algorithm. The actual implementation of this algorithm is 

quite complex, but we show that it is possible to accurately capture the essential features of the system using a 

modified version of a standard queuing model known as Processor Sharing. The Processor-Sharing model has a 

number of advantageous features including analytical tractability, computational simplicity and considerable 

robustness (almost complete insensitivity) to parameters that describe traffic and channel statistics. For example, 

important QoS measures such as blocking probability and throughput depend only on the mean traffic load of each 

cell, and not on the finer details of the traffic statistics of individual users. Similarly, the mean transfer delay 

experienced by individual users depends only on their mean service times. These features make the Processor-

Sharing model particularly suitable for use in a network design tool like Ocelot as part of the QoS evaluation 

module. We refer to [BKQRW2002] for further details. 

 

The rest of this paper is organized as follows. We begin with a preliminary explanation of the 1xEV-DO standard 

and its detailed features such as the channel reports, scheduling algorith and incremental redundancy. We then 

discuss specific traffic models for Web browsing and FTP sessions. Next, we present the Processor-Sharing 

model and explain how it models the Proportional Fair algorithm performance. This is followed by a section on the 

application to Ocelot and a section with numerical results that compare the predictions of the Processor-Sharing 

model with simulations. Finally, we conclude with a discussion of future extensions of this work. 

 

 



 

 

 

 

 

 

 

 

 

Table 1.  1xEV-DO forward link data rate configurations 

1xEV-DO system description 

 

1xEV-DO is part of a 3rd-generation cdma2000 family of standards that is derived from Qualcomm’s High Data 

rate (HDR) system [TE]. This system is designed to operate in a 1.25 Mhz spectrum. It is bandwidth-compatible 

with the IS-95 and 3G-1X systems and thus can be deployed with the same frequency plan. The air-interface on 

the forward link is however significantly different from that of 3G-1X.  The system is highly optimized for packet 

data and supports delay-tolerant Internet applications such Web browsing, FTP, and e-mail.  In contrast to 

traditional CDMA, users are time division multiplexed with short slot durations (1.67 ms), making it possible to 

transmit at a peak rate of 2.4 Mbps.  Users can be scheduled for transmission in any slot as there is no need for 

separate channel setup and tear down. Each slot carries pilot and medium access control bits that indicate the user 

identity for that slot. Control signals are also time division multiplexed with the data traffic. 

Fast channel condition feedback in the form of data rate control (DRC) bits on the reverse link is employed to 

control the transmission rate to the user in each slot, see Table 2.  Variable-rate transmission is achieved through 

the use of adaptive coding and modulation schemes. Turbo codes with puncturing, and QPSK, 8 PSK and 16 

QAM modulation schemes are used to achieve a rate variation from 38 Kbps to 2.4 Mbps as shown in Table 1. 

The fast feedback and short slot durations also allow the base station to schedule transmission to users when their 

channel fading conditions are most favorable. This enhances the throughput of the HDR system over power-

controlled CDMA systems and is usually referred to as multi-user diversity.  Incremental redundancy is another 

innovative feature of the system.  Some of the code blocks are partitioned into a number of self decodable parts 

and transmitted over multiple time slots, with the subsequent slot transmissions occurring only when necessary, 

depending on the positive or negative acknowledgment from the receiver. This further improves the throughput of 

the system. These important enhancements over traditional CDMA systems make 1xEV-DO a promising 

candidate for widespread deployment in the market place for packet data applications. 

Data Rates (kbps)
38.4 76.8 153.6 307.2 614.4 307.2 614.4 1228.8 921.6 1843.2 1228.8 2457.6

Code Rate 1/5 1/5 1/5 1/5 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3

Modulation Type QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPSK 8PSK 8PSK 16QAM 16QAM

PN Chips / Bit 32 16 8 4 2 4 2 1 1.33 0.67 1 0.5

Encoder Packet 
Duration (ms) 26.67 13.33 6.66 3.33 1.67 6.66 3.33 1.67 3.33 1.67 3.33 1.67



 

 

 

SNR threshold (dB) -12.5 -9.5 -8.5 -6.5 -5.7 -4 -1 1.3 3 7.2 9.5
Rates  (kbps) 38.4 76.8 102.6 153.6 204.8 307.2 614.4 921.6 1228.8 1843.2 2457.6
 

Table 2.  1xEV-DO data rate table 

 

Proportional Fair algorithm 

As mentioned above, the fast feedback information and short slot duration in 1xEV-DO allow the base station to 

schedule  transmissions to users when their channel conditions are favorable. The so-called Proportional Fair 

scheduling algorithm [BBGPSV2000, JPP2000] is specifically designed to achieve this objective. The key feature 

is to select users for transmission when their channel conditions are near-optimal in a relative sense, so as to 

optimize the throughput performance, while ensuring some degree of fairness among the various users. The 

Proportional Fair algorithm is the default scheduling mechanism implemented in current product releases of the 

1xEV-DO system. 

The Proportional Fair algorithm operates as follows. In each slot t, it selects user i with the maximum value of 

theratio )(/)( tRtDRC ii , where )(tDRC i  is the instantaneous rate estimate for user i in slot t and )(tRi  is the 

exponentially smoothed throughput of user i in slot t. Thus the time slot is not necessarily assigned to the user with 

the highest absolute rate, but is assigned to the user with the maximum value relative to the averaged throughput. 

The value of )(tRi  is updated in each slot according to 

 

)()()/1()()/11()1( tDRCtYTtRTtR iiii ∗∗+∗−=+ , 

 

where )(tYi  is a 0-1 variable indicating whether or not user i is selected in slot t. The time constant T may be 

interpreted as the length of the interval over which the throughput is averaged. A typical value for T is 1000 slots, 

corresponding to 1.67 seconds.  

Under certain statistical assumptions, it may be shown that the Proportional Fair algorithm maximizes the sum of 

the logs of the averaged throughputs of the various users. In other words, the throughput of no single user can be 

improved without reducing the throughputs of the other users by a greater total percentage, which property is 

referred to as “Proportional Fairness”. 

 



As mentioned in Section 1, the 1xEV-DO system is expected to support a variety of data applications, such as 

transferring files, Web browsing, downloading e-mails and possibly streaming services as well. In the present 

paper we will focus on Web browsing, which is likely to be one of the dominant traffic sources. 

A Web browsing session typically consists of several page requests, interspersed by `think times' between 

successive downloads. A page usually contains several embedded objects, each of which is segmented into 

packets that are then carried from the Web server to the user through a common TCP connection. Depending on 

the HTTP version used, the TCP connections associated with the various embedded objects are either set up in a 

serialized manner, or partly in parallel, with a certain maximum number of simultaneous TCP transfers. 

In the present paper, we treat pages as the basic entities which are transmitted across the air-interface, and do not 

model packet-scale details. This simplification is sensible when the wireless link is the main bottleneck on the end-

to-end path from the Web server to the user. In that case, the queue at the base station should rarely be starved 

during a page download, so that it is reasonable to lump individual packets into a single burst. 

 

Processor-Sharing model 

 

Homogeneous users  

In this section we describe how the performance of the 1xEV-DO system as perceived by Web browsing users 

may be evaluated by means of a Processor-Sharing model. We refer to [BKQRW2002] for further details. For 

convenience, we first focus on a scenario with a static population of n active users with statistically identical (but 

not necessarily independent) channel processes. By symmetry considerations, it then follows that each of the n 

users receives a fraction 1/n of the time slots. Since the slot duration of 1.67 ms is relatively short compared to the 

time scale of interest for user-perceived performance, it is then natural to assume that each of the n users is 

continuously served at a fraction 1/n of the aggregate transmission rate. The latter idealization is reminiscent of the 

typical use of the Processor-Sharing paradigm as a convenient abstraction of Round-Robin scheduling. What is 

different, however, is that the aggregate transmission rate is not a fixed quantity, but is determined by the channel-

aware actions of the Proportional Fair algorithm and thus depends on the number of active users n. As described 

earlier, the Proportional Fair algorithm basically selects in each slot the user with the maximum relative rate, i.e., 

the highest instantaneous rate, normalized by the smoothed throughput. Since the channel processes of the users 

are assumed to be statistically identical, we conclude that the smoothed throughputs of the various users should be 

identically distributed as well (though not necessarily independent). In addition, the smoothed throughputs should 

not show much fluctuation over time when the time constant T in the exponential smoothing is sufficiently large. 

We refer to [KW2002] for a rigorous justification of these claims. When combined, these two observations imply 

that the smoothed throughputs of the various users show only little variation around some common constant. 



Consequently, the Proportional Fair algorithm effectively selects the user with the highest instantaneous rate in 

each slot. Hence, the aggregate expected transmission rate with n users is }},...,{max{)( 1 nDRCDRCEnH = , 

with nDRCDRC ,...,1 representing the instantaneous rates of the various users. Since the channel processes are 

assumed to be statistically identical, we may write ,ii XRDRC ×=   ni ,...,1= , and thus H(n) = H(1) G(n), 

where }},...,{max{)( 1 nXXEnG = , where H(1) = R is the time-average rate and nXX ,...,1 represent the 

fluctuations in the instantaneous rates of the various users around the time-average value. For example, if the 

users have independent Rayleigh fading channels and the instantaneous rate is linear in the instantaneous SNR 

(signal-to-noise ratio), then nXX ,...,1 are independent, exponentially distributed random variables with unit mean. 

In that case a straightforward computation yields ∑
=

=
n

m

mnG
1

/1)( . Note that G(n) then behaves like log(n) as n 

tends to infinity. In the actual 1xEV-DO system, the instantaneous rate is selected from a finite set of discrete 

values according to Table 2. The function G(n) must then be evaluated numerically, and will saturate at a finite 

asymptote as n approaches infinity. We will refer to G(n) as the gain factor, since it represents the throughput 

gains that the Proportional Fair algorithm achieves from channel-aware scheduling, relative to the time-average 

rate R. 

 

We now turn to a dynamic configuration of users governed by the arrival and service completion of page requests 

during Web browsing sessions. If the backlog periods are relatively long, i.e., if the number of active users varies 

relatively slowly compared to the time scale on which the Proportional Fair algorithm operates, then it is plausible 

to assume a separation of time scales, where each user is continuously served at a rate H(n) / n (in bits/second), 

i.e., a fraction G(n)/n of its time-average rate, whenever there are n active users. 

 

We assume that the Web browsing sessions are initiated according to a Poisson process of rate λ , and entail a 

generally distributed number of page requests with finite mean M. The page sizes (in bits) are assumed to be 

generally distributed with finite mean τ . In particular, the page sizes are allowed to have a long-tailed distribution 

with possibly infinite variance, as long as the mean is finite. The `think times' can have an arbitrary distribution with 

a finite mean. We assume that at most K transfers are supported simultaneously. Page requests which are 

submitted when there are already K transfers in progress are blocked. 

 

The total offered traffic (in bits/second) for the Web browsing users is given by M∗∗= τλσ , where λ  is the 

session arrival rate (per second), τ  is the mean page size (in bits) and M is the mean number of page requests  

per session. For later purposes, it is convenient to also define the normalized load σκρ ∗= , where R/1=κ is 



the conversion factor from bits to seconds, with R = H(1) denoting the time-average rate (in bits/second). Note 

that ρ  is a dimensionless quantity. 

 

The above description amounts to a so-called Processor-Sharing model with varying service rate. It follows from 

standard results [Coh79, Kel79] that the distribution of the number of active users is given by 
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)()(φ and J(K) is a normalization constant. In particular, the mean number of active users is 

given by 
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and the blocking probability is given by 
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so that the throughput is σ∗− )1( L . Using Little 's law, we obtain that the mean response time for a page is given 

by 
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The above formula reflects the celebrated insensitivity property of the Processor-Sharing discipline, which shows 

that the mean response time only depends on the page size distribution through its mean. In fact, it may be shown 

that the expected conditional expected response time is 

}{
}{

}|{ SE
BE

b
bBSE == . 

Thus, the expected response time incurred by a user is proportional to the actual page size, with factor of 

proportionality }{/}{)( BESEKD = . This property embodies a certain `fairness principle', which implies that 

users requesting larger pages tend to experience larger response times. We will refer to the coefficient D(K) as 

the `stretch factor'. 

 

Symmetric scenarios 

For convenience, we assumed in the above formulation that the channel processes of all the users are statistically 

identical. In practice, the channel characteristics of the users will be radically different due to spatial diversity. We 

now extend the above-described Processor-Sharing model to such heterogeneous scenarios. We first consider a 

scenario where the channel processes are partially symmetric, in the sense that the users may have heterogeneous 



time-average rates, but that the relative fluctuations in the rates around the respective time-average values are still 

statistically identical. In other words, the instantaneous rates of the various users scale linearly with the time-

average rates, i.e., iii XRDRC ×= , where iR  the time-average rate of user i, and nXX ,...,1 represent the 

statistically identical fluctuations in the instantaneous rates of the various users around their respective time-

average values. Now observe that the smoothed throughputs of the various users as maintained by the 

Proportional Fair algorithm will scale linearly with the time-average rates as well. As a result, each of the users 

will still receive a fraction 1/n of the time slots when there are n users active, see also for instance [Hol2001]. In 

addition, it may be verified that when served, the expected rate of each user i is G(n) times its time-average rate 

iR . As before, we may thus assume that each user i is continuously served at a fraction G(n)/n of its time-

average rate iR , except that the time-average rates are now no longer identical but may vary across users. 

However, the above-described Processor-Sharing model still applies, provided the service requirement of a user is 

normalized by its time-average rate. Accordingly, we now need to compute the conversion factor as }/1{ RE=κ , 

where R is a random variable representing the time-average rate of an arbitrary user (the randomness reflecting 

the spatial diversity). Note that the above formula reduces to R/1=κ  when the channel processes are 

statistically identical so that all the users have the same mean rate R. With this modification, the above expressions 

for the various performance metrics continue to hold. In particular, the mean response time will remain 

proportional to the mean service requirement of a user. Note however that the mean service requirement now 

encapsulates both the mean page size and the inverse of the time-average rate, so that the mean response times 

will now obviously vary across users and be proportional to the inverse of their time-average rates. In contrast, the 

blocking probability does not depend on the identity of the user. 

 

Heterogeneous users  

In the above treatment, we allowed the users to have heterogeneous time-average rates, but still assumed the 

channel processes to be partially symmetric, in the sense that the relative rate variations of the various users 

around the time-average values are statistically identical. The latter assumption is roughly valid when the users for 

example have Rayleigh fading channels and the rate is approximately linear in the SNR. This approximation is 

reasonable when the SNR is not too high. In practice, when the time-average rates are heterogeneous due to 

differences in the underlying time-average SNR, the relative rate variations will usually not be exactly identical in 

distribution. Typically, the relative rate fluctuations will decrease with increasing SNR due to the concavity and the 

truncation of the transmission rate at higher SNR values. As a result, the gain factor G(n) is no longer independent 

of the time-average rates of the users. As an approximation, we will compute the gain function assuming a 

common SNR for all the users, equal to the average SNR on a log scale. Observe that the `true' average SNR is 

likely to be lower due to the fact that the actual user population will tend to be biased towards low-SNR users 



which experience longer transfer delays. As a result, the approximation will tend to overestimate the value of the 

absolute rate  H(n). However, the approximation will tend to underestimate the value of the relative gain factor 

G(n) = H(n) / H(1) due to the fact that the relative gains from scheduling tend to be lower for high-SNR users as 

explained above. Consequently, we expect the resulting approximations for the response times, the blocking 

probabilities and the throughput to be conservative. We will examine these issues in greater depth when we 

discuss the numerical experiments in the next section. 

Computation of gain factor 

In order to compute the gain function for a common time-average SNR, it remains to characterize the distribution 

of the instantaneous rate given the time-average SNR. In view of the mapping of Table 2, we thus need to specify 

the distribution of the instantaneous SNR estimate. We will assume that the instantaneous SNR estimate is 

exponentially distributed, corresponding to one-path Rayleigh fading.  In the case of two-path Rayleigh fading, the 

instantaneous SNR could be assumed to have a chi-squared distribution with two degrees of freedom. This would 

reduce the variation in the instantaneous SNR, and negatively affect the gain function. 

The above procedure is reasonable in low-mobility scenarios with correspondingly low Doppler frequencies.  In 

high-mobility scenarios, it is necessary to account for the fact that the instantaneous SNR estimate will typically be 

lowered due to the delayed feedback. Specifically, the DRC information fed back from the mobile is not available 

at the base station until several frames after the time the DRC was actually determined by the mobile because of 

processing and transmission delays. Since the channel is time-varying the channel conditions at the time of 

transmission could become significantly different from that at the time when the DRC was determined at the 

mobile, depending on the speed of the mobile which in turn determines the time correlation of the fading channel. 

Thus it is possible to enhance the performance of the system by employing a predictor at the mobile to predict the 

channel conditions at the time when the DRC is actually used by the base station. When such a prediction scheme 

is used by the mobile, it becomes necessary to model the predictor and include its effects in the calculation of the 

gain factor in order to compute the throughput and delay performance accurately. 

 

Application in Ocelot 

 

The model of the previous section requires as input the traffic offered to each sector, the conversion factor κ  for 

that sector, and the mean rate.  These are readily found using the cumulative distribution functions (CDFs) of the 

SNR and traffic for each sector.  So all that is required for incorporation of the 1xEV-DO model into Ocelot is the 

determination, for each sector, of such CDF’s, which are derived from radio link estimates, and from Ocelot’s 

model of wireless traffic. 



 

Ocelot models the distribution of wireless traffic as a mesh (plane graph), and for the purposes here, it is enough to 

consider the vertices of that graph. Each vertex represents a potential location for wireless users, and so  the 

distribution of the vertices represents the distribution of wireless traffic. For additional flexibility in the 

representation, each vertex is annotated with a value that represents an estimate of the Erlangs of 1xEV-DO users 

at its location. In addition, for each location and each sector, the path loss to the location from the sector has been 

calculated, and many other quantities. 

 

In order to determine the contribution of a given location to a sector’s 1xEV-DO load, Ocelot uses a simple model 

of shadow (slow) fading. Ocelot uses the common model of shadow fading as a log-normally distributed random 

variable. Together with the path loss estimates and sector power levels, this shadow fading model implies, at a 

given location, a probability for each sector that the sector has the maximum SNR and therefore will be serving 

1xEV-DO traffic for the location. (Note that this calculation is distinct from the later calculations of the 1xEV-DO 

model, incorparating the effect of fast (Rayleigh) fading.) Currently, the Ocelot calculation is conservative 

regarding these probabilities: the SNR for a sector, conditioned on the sector having the maximum SNR, is likely to 

be higher than the unconditioned SNR for the sector, but Ocelot’s calculation ignores this conditioning. These 

probabilities, together with the SNR estimates for each location/sector pair, and Erlang values for each location, 

constitute the CDF’s needed to compute the key quantities for modeling 1xEV-DO. 

 

It is worth remarking that currently Ocelot’s estimates of the probability that a given sector will have the maximum 

SNR are approximations, using a scheme due to Ocelot co-creator John Hobby. This is motivated by the need for 

computational speed. Based on the lognormal approximation, there is an SNR value X such that the expected 

number of sectors above that value is one half. Ocelot computes that value, and approximates the probability that a 

sector is maximum according to the probability that the sector SNR is above X. Note that if a sector does have 

SNR above X, then with probability at least one half, the sector does have the maximum value. 

Numerical results 

 

Our results are obtained using a trace-driven simulation of a single 1xEV-DO base station/sector, each trace value 

determining a user channel at a given time slot. The traces themselves are emulations of one-path Rayleigh fading 

channels using a well-known oscillator model, originally due to [Jak74], pages 65-76. (Other channel models can 

equally well be examined, e.g., Ricean, two-path Rayleigh fading, etc). Low fading frequencies (~5Hz) are used 

throughout and it is assumed that there is perfect channel prediction. This is an unrealistic assumption at higher 



fading frequencies where both simulation and experimental trials show reduced gains arising from degradation in 

the performance of the channel predictor. 

 

The time constant in the Proportional Fair algorithm is taken to be 1000 slots or roughly 1.67 seconds. The file 

sizes used in the simulations lead to response times much longer than this in the vast majority of cases, and so the 

convergence time of the Proportional Fair algorithm can be safely neglected. Indeed, a series of preliminary 

experiments were conducted which show that file sizes as short as 12.5 kbytes on the average would still give 

reasonably accurate comparisons with simulation. These further reflected the anticipated degradation in 

performance of the Proportional Fair algorithm when the file size was reduced still further. (Such performance 

impacts may be limited by careful choice of the initial value of the throughput estimates used by the Proportional 

Fair scheduler.) 

 

Our first results are for the base station/sector supporting a population of mobiles conducting Web browsing 

sessions. We use a mean-SNR cumulative distribution function taken from [BBGPSV2000] which may be 

regarded as typical. (In practice the analysis is conducted over Ocelot supplied mean-SNR CDF’s for the 

cell/sectors in the service area which is being planned out.) 

  

The Web browsing model consists of a (geometrically distributed) number of page request (M = 20 pages on the 

average) with a constant page size τ  = 40 kbytes. The interval between page requests corresponds to a user think 

time taken to be exponential with mean 40 seconds. These numbers match the parameter values specified for the 

HTTP traffic model in [3GPP2B]. (Neither the geometric assumption nor the assumptions for the think time are 

needed for the analytical model.) Coupled with the distribution function F, these assumptions determine the 

average load (in seconds of required transmission time) per user. The scheduler was limited to a maximum of K = 

15 simultaneous page requests and other page requests were supposed to be blocked and cleared. (In the 

simulation the page blocking was estimated by measuring the time congestion, as opposed to counting the page 

losses. Time and page congestion are equal provided the arrival process is Poisson.)  

 

Figure 2 shows the mean time to download a page versus the arrival rate λ of Web browsing sessions.  Each 

simulation point was produced for an interval corresponding to 10 million slots or roughly 5 hours of system time. 

The dotted curve gives simulation results for the case where each page has a constant size.  The dot-dashed 

curves are corresponding results in which the file distribution was changed to be Pareto with exponent α = 3 (and 

hence finite variance) with the same mean as before. 

 

 



 

Figure 2. Mean response time for constant and Pareto file size distributions 

 

 

Figure 3. Throughput for constant and Pareto file size distributions 

 



Our results show good agreement with the estimate from the Processor-Sharing model which is shown as a solid 

curve. The reduced rate of increase of the mean transfer time with the session arrival rate λ  is a consequence of 

the limit on the maximum number of simultaneous transfers. Further observe that the insensitivity property is 

confirmed, as the results for Pareto and constant file size lie close to one another. Figure 3 shows the 

corresponding system throughputs. These latter values were obtained as the product of the given offered traffic 

and the estimated page acceptance probabilities. 

 

Distinct CDF’s 

 

To examine the validity of the analytical model, results were obtained for several base station/sector CDF’s and 

compared with simulation. Here we present results for two cases from this study. In this case the traffic originates 

from mobile users which are requesting (single) file transfers. Each file is taken to be constant size, 50 kbytes. 

 

 

 

Figure 4. Mean response time for two randomly selected SNR CDF’s 

 

Figure 4 depicts the file response times for the two cell CDF’s, and shows the marked difference in delay that can 

arise as a result of differences in user distribution, propagation, network topology etc. (It is this type of  

performace difference which the planning tool is designed to compensate for by balancing cell/sector loads to QoS 



targets.)  As can be seen, the theoretical and simulation results match up and there is close agreement at low load, 

but the analytical results overestimate the mean response time somewhat at higher load. 

 

 

Figure 5. Blocking for two randomly selected SNR CDF’s 

 

The corresponding results for blocking are depicted in Figure 5 which also shows a reasonable match between 

simulation and theory. 

 

Limiting throughput 

 

In our results so far, the relative throughput gains from scheduling have been determined by obtaining the mean 

SNR over the sector CDF on the log (dB) scale. The approximations  tend to underestimate the relative gains 

due to scheduling. This is particularly true for higher numbers of competing users. This is reflected in our mean 

response time results which consistently overestimate at higher loads. However, the same approximation 

overestimates the absolute  throughputs as already discussed. A more accurate estimate of absolute throughput 

can be obtained by averaging the SNR weighted with the mean response times of pages/files. According to the 

Processor-Sharing approximation, these are inversely proportional to )(γR , the mean declared rate as a function 

of the time-average SNR γ , which are thus used instead, giving 
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Here p denotes the mean SNR density. The solid curve in Figure 6  graphs analytical estimates of the maximum 

throughput at fixed admission threshold K calculated using this weighting (mean response time weighting of the 

SNR). 

 

In the above connection, it may be helpful to think of maximum throughput being determined via the following 

imaginary experiment. Fix K, and start K simultaneous page transfers with users taken at random from the cell 

SNR CDF F. Each time a page transfer is completed, replace the completed user with another random user, 

selected according to F, and commence this new users page transfer. The long-run estimate of throughput from 

this experiment is the maximum possible throughput the system can achieve. This is the case, because pages are 

blocked independent of the user, and higher throughputs cannot be achieved by blocking additional users without 

their page sizes and associated mean SNR’s being known a priori. 

  

Figure 6 graphs simulations of the throughput in the Web browsing model as a function of K for various session 

arrival rates. As the graphs show, the analytical throughput bounds do indeed form an envelope for the family of 

throughput curves. Note also that the maximum throughput increases only slightly with increasing K, reflecting the 

very small likelihood that the highest rates in Table 2 will be achieved by users with low SNR’s. The graphs also 

show that the throughput flattens out (saturate) as K increases and approaches a second limit, the maximum which 

can be carried for a given session arrival rate λ . 

 



 

 

Figure 6. Limiting throughput versus admission threshold K 

 

 

These results can also be seen from Figure 7 which shows throughput against session arrival rate with an 

admission threshold of K users. The horizontal lines are taken from the envelope curve in Figure 6. The small 

discrepancies show that response time weighting slightly underestimates the throughput. 

 

Additional numerical results may be found in [BKQRW2002]. 

 



 

Figure 7. Throughput versus offered traffic lambda 

Conclusion 

 

We have described enhancements to Lucent’s wireless network planning tool known as Ocelot that enable 

evaluation and planning of 3rd-generation 1xEV-DO networks. A critical feature of 1xEV-DO is a channel-aware 

scheduler that uses the Proportional Fair algorithm [BBGPSV2000, JPP2000] to improve system performance. 

This paper presents novel analytical techniques to evaluate the performance of the Proportional Fair algorithm. 

While the algorithm itself is quite detailed and complex, we show that it is well approximated by a modified version 

of a standard queueing model known as Processor Sharing. The approximation permits easy estimation of user-

level QoS measures for elastic traffic such as mean file transfer time, mean throughput and blocking for FTP and 

Web browsing connections. The model is parsimonious in the sense that a single gain factor accounts for the 

scheduling gains that result from individual users’ channel variations. Simulations suggest that this parameter can 

be reasonably accurately estimated from channel statistics even for heterogeneous user populations with different 

fading characteristics. Another advantageous feature of the proposed model is its insensitivity to the detailed traffic 

characteristics of individual users. The blocking and throughput depend only on the average system load, while the 

mean transfer delay for each user depends only on the mean service time he/she receives. These features of the 

Processor-Sharing model make it particularly suitable for use in a network design tool like Ocelot. 

 



Several enhancements to the Processor-Sharing model are clearly possible, with some being more important than 

others.  One that is particularly relevant is the incorporation of the effects of higher-layer protocols such as TCP 

and HTTP on data QoS. Preliminary results indicate that these protocols could have significant impact on end 

users' QoS experience, especially when the system is heavily loaded. For example, additional delays are introduced 

by page request/page get processes, with the amount of delay depending on Web page statistics and the way 

HTTP1.1 organizes objects.  Pages could arrive in bursts and cause starvation in the buffers at the base station.  

The TCP three-way hand shake is another source of delay.  When combined, these extra delays may cause the 

round trip time (RTT) to exceed the retransmission time out (RTO) and result in TCP time out. The performance 

could further degrade if there is packet loss, since this would cause RLP/TCP retransmissions and possibly 

RLP/TCP time out. Other important modifications to the present analysis include modeling ARQ (incremental 

redundancy), channel measurement/estimation errors and feedback delays. 

 

Future work will require the computational extension of our model to include the efficient calculation of derivatives. 

While Ocelot currently models (and optimizes for) UMTS and 3G1X packet data traffic, many extensions and 

refinements of that work are needed. For example, Ocelot does not presentlyly model streaming data traffic  

[3GPP2A] and cannot handle multiple priorities. However, in modeling the effect of power amplifier limitations, the 

power requirements for streaming traffic are sufficiently close to circuit-switched that it is possible that the 

modeling algorithm currently used could be applied to streaming traffic  as well. The validity of such an approach 

would need to be verified, to assure that, among other things, the effect of the gain due to channel-aware 

scheduling is relatively small. A more elaborate model of streaming traffic may be needed. For example, methods 

for the computing the QoS for a large class of streaming data applications under the algorithm proposed in 

[SR2001] are presented in [KRWB2002]. These methods may be simple enough to incorporate into Ocelot. 

However, the more general problem of predicting the performance seen by streaming applications under channel-

aware scheduling algorithms, such as those considered in [AQS2002], remains a subject for future work. 
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