
Self-improving Algorithms for Delaunay Triangulations

Kenneth L. Clarkson

IBM Almaden Research Center

C. Seshadhri

Dept. of Computer Science

Princeton University

July 22, 2008

Abstract

We study the problem of two-dimensional Delaunay triangulation in the self-improving algorithms
model [1]. We assume that the n points of the input each come from an independent, unknown, and
arbitrary distribution. The first phase of our algorithm builds data structures that store relevant
information about the input distribution. The second phase uses these data structures to efficiently
compute the Delaunay triangulation of the input. The running time of our algorithm matches the
information-theoretic lower bound for the given input distribution, implying that if the input distribu-
tion has low entropy, then our algorithm beats the standard Ω(n log n) bound for computing Delaunay
triangulations.

Our algorithm and analysis use a variety of techniques: ε-nets for disks, entropy-optimal point-
location data structures, linear-time splitting of Delaunay triangulations, and information-theoretic
arguments.

1 Introduction

Data in the real world often has some structure. Suppose the inputs to an algorithm are generated by
a probability distribution. Even if the distribution cannot be represented by a closed form expression,
it may have some structural properties which can be exploited to speed up the algorithm. A standard
algorithm will not be able to exploit this extra structure.

The model of self-improving algorithms was defined by Ailon et al. [1] to capture these scenarios.
Suppose we wish to compute a function f on a sequence of inputs I1, I2, · · · which are being generated
from an unknown and arbitrary time-invariant distribution D. A self-improving algorithm for computing
f initially only gives standard worst-case guarantees. As it handles more and more inputs, it learns about
the distribution. Eventually, it tunes itself to be more efficient for D, and may beat the worst-case running
time. Self-improving algorithms have two phases: the initial learning phase, where the algorithm learns
about D and builds data structures storing this information, and the limiting phase, where the algorithm
uses the information obtained to speed up the running time. The main parameters of a self-improving
algorithm are the number of rounds (number of problem instances) in the learning phase, the space used
to store information about the distribution, and the running time in the limiting phase.

The basic intuition is that if D has low entropy, then the self-improving algorithm should be able to
make a significant improvement. Of course, it may take too long to learn D as a whole, or even to learn
a reasonable approximation of it. The challenge is to learn as little as possible about D and still glean
enough to improve the running time. If the entropy of the input distribution for a sorting problem is
low, for example, then a self-improving algorithm for sorting the resulting input will do better than the
standard Ω(n log n) lower bound.

We take the concept of self-improving algorithms to the geometric realm, and the problem of com-
puting Delaunay triangulations. The most relevant result is that of [1], where a self-improving sorter was
constructed. We borrow some ideas from there, and use geometric techniques to design a self-improving
algorithm for Delaunay triangulations. In this new mode of algorithmic analysis, our algorithm is optimal,
as its running time in the limiting phase matches the information-theoretic lower bound for computing
the output over inputs from a fixed distribution.

1

We now formally define the problem. Let

I := (x1, · · · , xn)

denote an input instance, where each xi is a point in the plane, generated by a point distribution Di. The
distributions Di are arbitrary, and may be continuous, although we never explicitly use such a condition.
Each xi is independent of the others, and so the input I is drawn from the product distribution D :=

∏

i Di.
In each round, a new input I is drawn from D, and we wish to compute the Delaunay triangulation T (I)
of I. We use the comparison model, so any operation consists of evaluating a polynomial at some point
(more details about this are given in Section 3). Although it is not critical, for the sake of simplicity, we
will assume that the points of I are in general position, which is true with probability one when all the
Di’s are continuous.

The distribution D also induces a (discrete) distribution on the set of Delaunay triangulations, viewed
as labeled graphs on the vertex set [1, n]. Consider the entropy of this distribution: for each graph G on
[1, n], let pG be the probability that it represents the Delaunay triangulation of I ∈R D. Let the output
entropy H(T (I)) := −

∑

G pG log pG. By information-theoretic arguments, this quantity is a lower bound
on the expected time required by any comparison-based algorithm to compute the Delaunay triangulation
of I ∈R D. An optimal algorithm will be one that has an expected running time of O(H(T (I)) + n).

Our main result is the following.

Theorem 1.1 For inputs I1, I2, . . . drawn from the product distribution D =
∏

i Di, and for any con-

stant ε > 0, there is a self-improving algorithm for finding the Delaunay triangulations of the Ij that

has a learning phase of O(nε) rounds and uses O(n1+ε) space 1. The limiting-phase running time is

O(ε−1(H(T (I)) + n)), and therefore optimal.

Why is the independence of the Di’s important? A lower bound from [1] shows that any optimal self-
improving sorter that handles all possible distributions requires exponential space. From the reduction of
sorting to Delaunay triangulations, the following is an immediate corollary of Lemma 2.1 in [1].

Corollary 1.2 There is an input distribution D such that any self-improving algorithm computing the

Delaunay triangulation of inputs from D in O(H(D) + n) limiting running time requires Ω(2n) space.

Furthermore, by Lemma 2.5 of [1], the time-space tradeoff we provide is essentially optimal.

2 The algorithm

We describe the algorithm in two parts. The first part explains the learning phase and the data structures
that are constructed. The second part explains how these data structures are used to speed up the
computation in the limiting phase. The expected running time will be expressed in terms of certain
parameters of the data structures obtained in the learning phase. In the next section, we will prove that
these parameters are comparable to the output entropy H(D). We will assume in this section that the
distributions Di are known to us. Furthermore, the data structures described here will use O(n2) space.
Section 4 shows how to remove this assumption and give the space-time tradeoff bounds of Theorem 1.1.

2.1 Learning Phase

For each round in the learning phase, we use a standard algorithm to compute the output Delaunay
triangulation. We also perform some extra computation to build some data structures that will allow
speedup in the limiting phase. These data structures are easily described.

The learning phase is as follows. Take the first k := c log n input lists I1, I2, · · · , Ik, where c is a
sufficiently large constant. Merge them into one list S of kn = cn log n points. Setting ε := 1/n, find an
ε-net V for the set of all open disks. In other words, find a set V ⊆ S such that for any open disk C that
contains more than εkn = c log n points of S, C contains at least one point of V . Matousek, et al. show
that [7] there exist ε-nets of size O(1/ε) for disks, where here O(1/ε) = O(n). Furthermore, a construction

1The total time required for the learning phase is also O(n1+ε).

2

and analysis similar to that of Clarkson and Varadarajan [6] yields a randomized construction that takes
n(log n)O(1) expected time.

We construct the Delaunay triangulation of V , which we denote by T (V). We build an optimal planar
point location structure (called Γ) for T (V): given a point, we can find the triangle of T (V) that it lies
in O(log n) time. Define the random variable ti to be the triangle of T (V) that xi falls into. Now let the
entropy of ti be HV

i . If the probability that xi falls in triangle t of T (V) is pt
i, then HV

i = −
∑

t pt
i log pt

i.
For each i, we construct a search structure Γi of size O(n) that finds ti in expected O(HV

i) time. These
Γi’s can be constructed using the results of Arya et al. [3], for which the number of primitive comparisons
is HV

i + o(HV
i)).

We will show that the triangles of T (V) do not contain many points of a new input I ∈R D on the
average. Consider a triangle t of T (V) and let Ct be its circumscribed Delaunay disk. Let Xt := |I ∩Ct|,
the random variable that is the number of points of I ∈R D that fall inside Ct. Note that the randomness
comes from the random distribution of S, and so V and T (V), as well as the randomness of I. We are
interested in the expectation EI [Xt] over I of Xt.

Claim 2.1 With probability at least 1− 1/n3 over the construction of T (V), for every triangle t of T (V),
EI [Xt] = O(1).

Proof: Let the list of points S be s1, · · · , skn, the concatenation of I1 through Ik. Consider the triangle
t with vertices s1, s2, s3. Note that all the remaining kn − 3 points are chosen independently of these

three, from some distribution Dℓ. For each j ∈ [4, kn], let Y
(t)
j be the indicator variable for the event that

sj is inside Ct. Let Y (t) =
∑

j Y
(t)
j . By the Chernoff bound, for any β ∈ (0, 1],

Pr[Y (t) ≤ (1 − β)E[Y (t)]] ≤ e−β2E[Y (t)]/2

Setting β = 1/2, if E[Y (t)] > 48 logn, then Y (t) > 24 logn with probability at least 1 − n−6. We can
now consider any triangle generated by some triple of points si, sj, sm, for i, j, m ∈ [4, kn], and apply the
same argument as above. Taking a union bound over all triples of the points in S, we obtain that with
probability at least 1 − n−3, for any triangle t generated by the points of S, if E[Y (t)] > 48 logn, then
Y (t) > 24 logn. We henceforth assume that this event happens.

Consider a triangle t of T (V) and its circumcircle Ct. Since T (V) is Delaunay, Ct contains no point of
V in its interior. Since V is a (1/n)-net for all disks with respect to S, Ct contains at most c log n points
of S, that is, Y (t) ≤ c logn. This implies that E[Y (t)] = O(log n), as in the previous paragraph. Since
E[Y (t)] > (log n − 3)EI [Xt], we obtain EI [Xt] = O(1), as claimed. 2

2.2 Limiting Phase

Suppose that we are done with the learning phase, and have T (V) with the property given in Claim 2.1:
for every triangle t ∈ T (V), EI [Xt] = O(1). We have reached the limiting phase where the algorithm
is expected to compute the Delaunay triangulation with the optimal running time. We will prove the
following lemma in this section.

Lemma 2.2 Using the data structures from the learning phase, and the properties of them that hold with

probability 1 − O(1/n), in the limiting phase the Delaunay triangulation of input I can be generated in

expected O(n +
∑n

i=1 HV
i) time.

The algorithm, and the proof of this lemma, has two steps. In the first step, T (V) is used to quickly
compute T (V ∪ I), with the time bounds of the lemma. In the second step, T (I) is computed from
T (V ∪ I), using a randomized splitting algorithm proposed by Chazelle et al [5], whose Theorem 3 is as
follows.

Theorem 2.3 Given a set of n points P and its Delaunay triangulation, for any partition of P into

two disjoint subsets P1 and P2, the Delaunay triangulations T (P1) and T (P2) can be computed in O(n)
expected time, using a randomized algorithm.

3

The remainder of the proof of the lemma, and of this subsection, is devoted to showing that T (V ∪ I)
can be computed in the time bound of the lemma. The algorithm is as follows. For each xi, we use
Γi to find the triangle ti of T (V) that contains it. By the arguments given in the previous section, this
takes time O(

∑n
i=1 HV

i). We now need to argue that given the ti’s, the Delaunay triangulation T (V ∪ I)
can be computed in expected linear time. For each xi, we walk through T (V) and find all the Delaunay
disks of T (V) that contain xi, as in incremental constructions of Delaunay triangulations. This is done
by breadth-first search of the dual graph of T (V), starting from ti. Let Si denote the set of circumcircles
containing xi. The following claim implies that this procedure will work.

Claim 2.4 The set of t ∈ T (V) with Ct ∈ Si is a connected set in the dual graph of T (V).

Proof: Omitted.

Claim 2.5 Given all ti’s, all Si sets can be found in expected O(n) time.

Proof: To find all circles containing xi, do a breadth-first search from ti. For any triangle t encountered,
check if Ct contains xi. If it does not, then we do not look at the neighbors of t. By Claim 2.4, we will
visit all Ct’s that contain xi. The time taken to find Si is O(|Si|). The total time taken to find all St’s
(once all the ti’s are found) is O(

∑n
i=1 |Si|). Define the indicator function χ(t, xi) that takes value 1 if

xi ∈ t and zero otherwise. We have

n
∑

i=1

|Si| =

n
∑

i=1

∑

t∈T (V)

χ(t, xi) =
∑

t∈T (V)

n
∑

i=1

χ(t, xi) =
∑

t

Xt.

Therefore, by Claim 2.1,

E[
n

∑

i=1

|Si|] = E[
∑

t

Xt] =
∑

t

E[Xt] = O(n).

This implies that all Si’s can be found in expected linear time. 2

Our aim is to build the Delaunay triangulation of V ∪ I in linear time using the Si sets. This is done
by a standard incremental construction where the xi’s are added in order x1, x2, · · · , xn. We will show
how we can get the set of edges that each xi will “kill” using the Si sets. We will assume that given any
triangle t, we can get all the Si sets that t belongs to.

Let Vi := V ∪ {x1, · · · , xi}. When we add x1, the edges of T (V) that will be affected are the edges of
triangles in S1. Therefore, T (V1) can be obtained in O(|S1|) time. Now suppose we have T (Vi−1) and we
add xi. Again, we can show that if some edge from T (V) is affected, it must be an edge of Si.

Claim 2.6 When xi is added to T (Vi−1), suppose that edge e is removed. If the endpoints of e are both

in V , then e is an edge of some triangle in Si.

This is proved in the appendix.
The claim above shows that only O(|Si|) time is required to find edges from T (V) that are removed.

But now, we have the additional problem of finding affected edges which may not have an endpoint in V ,
and therefore are not present in T (V).

Claim 2.7 Suppose e has an endpoint in I. There is an edge f ∈ T (V) such that, for the two triangles

t, t′ incident on f , the point xi and the endpoints of e lie in either Ct or Ct′ .

The proof is given in the appendix.
This now gives us a method of finding edges of T (Vi−1) affected by the addition of xi. Take a triangle

t ∈ Si and choose an edge e of t (for ease of notation, we will say e ∈ t). Let the neighbor of t incident
to e be t′. Look at the points in {x1, · · · , xi−1} that are in Ct and Ct′ , and take the edges of T (Vi−1)
between them. These are the edges that need to be checked.

Claim 2.8 Given all Si sets and T (V), T (Vn) can be generated in expected linear time.

4

Proof: The total time taken to handle all edges of T (V) that get killed is E[
∑n

i=1 |Si|] = O(n). Consider
some t ∈ T (V) and edge e of t. Let te ∈ T (V) be incident to e. The random variable Zt,e is set to be
XtXte . By Claim 2.7, the total time to find all (other) affected edges is bounded above by

n
∑

i=1

∑

t∈Si

∑

e∈t

Zt,e.

For a triangle t, we define the indicator random variable χ(t, i), as before, for the event that xi falls in Ct.
Thus, Xt =

∑n
i=1 χ(t, i).

n
∑

i=1

∑

t∈Si

∑

e∈t

Zt,e =
n

∑

i=1

∑

t

χ(t, i)
∑

e∈t

XtXte

=
n

∑

i=1

∑

t

∑

e∈t

χ(t, i)XtXte ,

and

E[χ(t, i)XtXte] = E
[

χ(t, i)

n
∑

j=1

χ(t, j)

n
∑

k=1

χ(te, k)
]

=

n
∑

j=1

E[χ(t, i)χ(t, j)χ(te, j)]

+
∑

j 6=k

E[χ(t, i)χ(t, j)χ(te, k)]

5

Since χ(t, i) is an indicator, χ(t, j)χ(te, j) ≤ χ(t, j). For j 6= k, χ(t, j) and χ(te, k) are independent. For
the second summation in the equation above, we can separate out the case i = j and i = k.

E[χ(t, i)XtXte]

=
n

∑

j=1

E[χ(t, i)χ(t, j)χ(te, j)] +
∑

k 6=i

E[χ(t, i)2χ(te, k)]

+
∑

j 6=i

E[χ(t, i)χ(te, i)χ(t, j)]

+
∑

i6=j 6=k

E[χ(t, i)χ(t, j)χ(te, k)]

≤

n
∑

j=1

E[χ(t, i)χ(t, j)] + E[χ(t, i)]
∑

k 6=i

E[χ(te, k)]

+
∑

j 6=i

E[χ(t, i)χ(t, j)]

+ E[χ(t, i)]
∑

i6=j 6=k

E[χ(t, j)]E[χ(te, k)]

= E[χ(t, i)] + E[χ(t, i)]
∑

j 6=i

E[χ(t, j)]

+ E[χ(t, i)]
∑

k 6=i

E[χ(te, k)]

+ E[χ(t, i)]
∑

j 6=i

E[χ(t, j)]

+ E[χ(t, i)]
∑

i6=j 6=k

E[χ(t, j)]E[χ(te, k)]

≤ E[χ(t, i)] + 2E[χ(t, i)]

n
∑

j=1

E[χ(t, j)]

+ E[χ(t, i)]
n

∑

k=1

E[χ(te, k)]

+ E[χ(t, i)]
(

n
∑

j=1

E[χ(t, j)]
)(

n
∑

k=1

E[χ(te, k)]
)

= E[χ(t, i)]
(

1 + 2E[Xt] + E[Xte] + E[Xt]E[Xte]
)

By Claim 2.1, we get that E[χ(t, i)XtXte] ≤ αE[χ(t, i)], for some fixed constant α. The expected running
time is bounded by

E
[

n
∑

i=1

∑

t∈Si

∑

e∈t

Zt,e

]

=

n
∑

i=1

∑

t

∑

e∈t

E[χ(t, i)XtXte]

≤ α

n
∑

i=1

∑

t

∑

e∈t

E[χ(t, i)]

= 3α

n
∑

i=1

E
[

∑

t

χ(t, i)
]

= 3α

n
∑

i=1

E[|Si|] = O(n)

2

6

With this claim, it follows that T (Vn) can be computed in expected O(n+
∑n

i=1 HV
i) time, and hence,

as discussed at the beginning of this subsection, Lemma 2.2 follows.

3 Limiting Phase Optimality

In this section, we prove that the running time bound in Lemma 2.2 is indeed optimal. Before we get into
the analysis of the various entropies that represent the running time, it is important to clarify the model of
computation. We are using comparison based algorithms, where a single step (or “comparison”) involves
evaluating a point (z1, z2, · · · , zd) ∈ R

d (for constant d) at some polynomial f(z1, z2, · · · , zd) : R
d → R

and checking if the result is positive or negative. Based on this result, the algorithm chooses the next
comparison to make. An algorithm can be completely represented by a decision tree, with each node
representing some comparison. In this model, we get an information-theoretic lower bound of H(T (I))
for computing the Delaunay triangulation of input I ∈R D.

Recall that by Lemma 2.2, the running time of the our algorithm is expected O(n+
∑

i HV
i). The aim

of this section is to prove the optimality of the algorithm by the following theorem.

Theorem 3.1 For HV
i the entropy of the triangle ti of T (V) containing xi, and H(T (I)) the entropy of

the Delaunay triangulation of I, considered as labeled graph,

∑

i

HV
i = O(H(T (I)) + n).

This theorem will be proven through a chain of lemmas, which will eventually connect
∑n

i=1 HV
i to

H(T (I)). Note that V is a fixed set and there is no randomness in T (V). As a result, for the sake of
information theory bounds, we can assume that T (V) is known in advance: indeed, any computation
whatsoever can be done in advance on the points in V and is not charged as a comparison.

The chain of lemmas begins with H(T (Vn)), which is bounded above by O(H(T (I) + n) in the next
lemma. The entropy H(T (Vn)) is used to bound

∑

i E[Hi] in the following lemma, where Hi is the entropy
of wi, the triangle of T (Vi−1) that contains xi. After some preliminary lemmas, the final lemma in the
chain uses

∑

i E[Hi] to bound
∑

i HV
i , as needed for the theorem.

By analogy to H(T (I)), let H(T (Vn)) be the entropy of T (Vn) as a labeled graph, under the distribution
induced by that of I. (Recall that Vn := V ∪ I.) The entropy H(T (Vn)) is a lower bound for the expected
running time of any comparison-based algorithm that computes T (Vn).

The first lemma in the chain is the following.

Lemma 3.2

H(T (Vn)) = O(H(T (I)) + n).

Proof: Using Chazelle’s linear-time algorithm to compute the intersection of two three-dimensional con-
vex polyhedra [4], we can compute T (Vn) in O(n) time, given T (V) and T (I). Suppose we represent every
graph induced by a Delaunay triangulation on n points by some string, denoted by s(T). By information
theory, there exists some string encoding such that E[|s(T (I))|] = O(H(T (I))). Suppose, for input I, we
are given the string s(T (I)), so we can uniquely identify T (I). Now, we use the linear-time algorithm
to compute T (Vn). Obviously, this algorithm only performs O(n) comparisons. Therefore, the output
T (V ∪ I) can be uniquely identified by s(T (I)) and cn more bits, for some constant c. By definition,
E[|s(T (I))| + cn] ≥ H(T (Vn)). This completes the proof. 2

Let us consider an incremental construction of T (Vn). At the ith step, xi is added to T (Vi−1). We can
consider a random process associated with this step. The points x1, · · · , xi−1 are already fixed, thereby
fixing T (Vi−1). We can consider the entropy of the random variable wi that is the triangle of T (Vi−1) in
which xi falls. More precisely, we define

H
T (Vi−1)
i := H(wi) = −

∑

t∈T (Vi−1)

p(i, t) log p(i, t)

p(i, t) is the probability that xi lies in t. Note that this entropy itself is a random variable, since T (Vi−1)
depends on x1, · · · , xi−1 which are randomly chosen. But wi is independent of this randomness (since the

7

distributions Di are all independent). Therefore, we can take the expectation over the random choices

{x1, · · · , xi−1}, Ex1,··· ,xi−1 [H
T (Vi−1)
i]. Again, let us explain what this means. Given any set of points

x1, · · · , xi−1, we can define the entropy H
T (Vi−1)
i . Now, because the randomness of wi only depends on

the randomness of xi, wi is independent of x1, · · · , xi−1. Obviously, H
T (Vi−1)
i is a function of x1, · · · , xi−1.

We take the expectation over the random choices of x1, · · · , xi−1 to get E[H
T (Vi−1)
i]. For clarity, we drop

the subscripts and denote this by E[Hi].
In the next lemma, we relate the entropy of this incremental procedure of constructing T (Vn) to the

actual entropy of the T (Vn).

Lemma 3.3
∑

i

E[Hi] = O(H(T (Vn)) + n)

To prove the lemma, we need a claim and a lemma. The claim follows from the proof of Claim 2.8,
and the lemma is proven in the appendix.

Claim 3.4 For all j ≤ i, the expected degree of xj in T (Vi) is O(E[|Sj |]).

Lemma 3.5

H(w1, · · · , wn) ≥

n
∑

i=1

E[Hi]

Here H(w1, · · · , wn) is the joint entropy of all w1, · · · , wn, and a lower bound on the expected length
of any string representation of w1, · · · , wn.
Proof: (of Lemma 3.3) Before giving the details of the proof, let us first sketch out the main idea.
Suppose all the random choices x1, · · · , xn have been made. We would like to argue that if we know
T (Vn), then in linear time we can determine the wi’s for all i. This will be done by a procedure that goes
backwards: it first removes xn, and then computes the Delaunay triangulation T (Vn−1). This can be done
in time linear in the degree of xn [2]. The triangle wn can be determined in time linear in the degree of
xn. Now, we remove xn−1 and so on, thereby finding all wi’s. It seems that by a standard backwards
analysis argument, we should remove the xi’s in random order. By a planarity argument, we should get
that the expected degree (over the random order) is constant at every step. But because we remove only
the points in I, which is a strict subset of Vn, this argument will not hold.

However, using the properties of V and the randomness of I, we can still argue that these degrees will
be expected constant. From Claim 3.4, it is easy to see that we can get the wi’s in O(

∑

i E[|Si|]) time. Let
us now apply an argument similar to that in Lemma 3.2. Let there be a string representation s(T (Vn))
for each possible T (Vn). By definition of entropy, we can assume that E[|s(T (Vn))|] = O(H(T (Vn))).
Using the procedure described above, we can uniquely identify w1, · · · , wn by a string of expected length
E[|s(T (Vn))|] + O(E[

∑

i |Si|]) = O(H(T (Vn)) + n).
The proof now follows by Lemma 3.5, since H(w1, · · · , wn) is no more than EI [|s(T (Vn))|. 2

We now come to the final lemma in our chain of entropy inequalities.

Lemma 3.6
∑

i

HV
i = O(

∑

i

E[Hi] + n)

Proof: Consider x1, · · · , xi−1 to be chosen, fixing the triangulation T (Vi−1). The entropy Hi is now
well defined. As before, wi ∈ T (Vi−1) and ti ∈ T (V) are the triangles that xi falls into. We will describe a
procedure that given wi finds ti using O(|Si|) comparisons. First, we look at the Delaunay triangulations
as 3-dimensional polytopes. By projecting onto the paraboloid z = x2 + y2, each point of the Delaunay
triangulation is represented by a halfspace in 3-dimensions. Every vertex of the polytope corresponds
to a Delaunay triangle (or disk). Abusing notation, T (V) and T (Vi−1) are going to be the respective
polytopes. We start by tetrahedralizing T (V). Since T (Vi−1) is completely contained in T (V), for every
vertex of T (Vi−1), we can determine a tetrahedron of T (V) that contains it (maybe on the boundary).
Note that all of this can be done before we look at point xk. Given wi, we can determine the tetrahedron

8

that it lies in without any comparisons. Since the triangle wi will certainly be destroyed on the addition
of xi, the vertex corresponding to wi (in the polytope) will be removed by the addition of the plane xi.
Obviously, there is some vertex of the tetrahedron would also be removed by the addition of xi to T (V).
In a constant number of queries, this vertex can be determined. Now, let us go back to the Delaunay
triangulations. This vertex corresponds to some Delaunay disk of T (V) killed by xi. By doing a walk
through T (V), we can find ti in O(|Si|) time. This implies that

HV
i ≤ Hi + O(|Si| + 1).

Taking expectations over I and summing,

∑

i

HV
i ≤

∑

i

E[Hi] + O(E[
∑

i

|Si|] + n) ≤
∑

i

E[Hi] + O(n).

2

As discussed above, Theorem 3.1 now follows by combining Lemmas 3.2, 3.3, and 3.6.

4 The time-space tradeoff

We show how to remove the assumption that we have prior knowledge of the Di’s (to build the search
trees Γi) and prove the time-space tradeoff given in Theorem 1.1. These techniques are identical to those
used in [1] for their self-improving sorter. Let ε > 0 be any constant. The first O(log n) rounds of the
learning phase are used as before to construct the Delaunay triangulation T (V). To construct the tree
Γi, we would need to know the exact probability with which xi falls in every triangle of T (V). Since
these probabilities cannot be determined in a sublinear number of learning rounds, we build some suitable
approximations for these search structures. We first build a standard search structure Γ over the triangles
of T (V). Given a point x, we can find the triangle of T (V) that contains x in O(log n) time.

The learning phase goes on for O(nε log n) rounds. The main trick is to observe that (up to constant
factors), the only probabilities that are relevant are those that are > n−ε. In each round, for each xi,
we record the triangle of T (V) that xi falls into. At the end of O(nε log n) rounds, we take the set Ri of
triangles such that for t ∈ Ri, xi was in t for at least Ω(log n) rounds. We remind the reader that pt

i is
the probability that xi lies in triangle t. For every triangle in Ri, we have an estimate of the probability
p̂t

i (obtained by simply taking the total number of times that xi lay in t, divided by the total number
of rounds). By a standard Chernoff bound argument, for all t ∈ Ri, p̂t

i = Θ(pt
i). Furthermore, for any

triangle t, if pt
i = Ω(n−ε), then t ∈ Ri.

For each xi, we build the approximate search structure Γi. Consider the following probability distribu-
tion p̄i over the triangles of T (V): if t ∈ Ri, set p̄t

i := p̂t
i/Ni, where Ni :=

∑

t∈Ri
p̂t

i, and otherwise p̄t
i := 0.

Using the construction of [3], we can build the optimal planar point location structure Γi according to
the distribution p̄i. The limiting phase uses these structures to find ti for every xi: given xi, we use Γi

to search for it. If the search does not terminate in log n steps or Γi fails to find ti (since ti /∈ Ri), then
we use the standard search structure, Γ, to find ti. Therefore, we are guaranteed to find ti in O(log n)
time. Without loss of generality, we can assume that each Γi deals with only nε triangles (and therefore,
a planar subdivision of size nε). By the bounds given in [3], each Γi can be constructed with size nε

in nε log n time. The total space is bounded by n1+ε and the time required to build them is at most
n1+ε log n.

Let st
i denote the time to search for xi given that xi ∈ t. By the properties of Γi, and noting that

9

Ni ≤ 1,
∑

t∈Ri

p̄t
is

t
i =

∑

t∈Ri

p̄t
i log(1/p̄t

i)

= N−1
i

∑

t∈Ri

p̂t
i log(Ni/p̂t

i)

= N−1
i

[

∑

t∈Ri

p̂t
i log Ni −

∑

t∈Ri

p̂t
i log p̂t

i

]

≤ −N−1
i

∑

t∈Ri

p̂t
i log p̂t

i

= O
(

N−1
i (−

∑

t∈Ri

pt
i log pt

i + 1)
)

We now bound the expected search time for xi.
∑

t

pt
is

t
i =

∑

t∈Ri

pt
is

t
i +

∑

t/∈Ri

pt
is

t
i

= O(
∑

t∈Ri

p̂t
is

t
i +

∑

t/∈Ri

pt
i log n)

= O
(

Ni

∑

t∈Ri

p̄t
is

t
i +

∑

t/∈Ri

pt
i log n

)

Noting that for t /∈ Ri, pt
i = O(n−ε) and therefore log pt

i ≤ −ε logn + O(1), and so

∑

t

pt
is

t
i

= O
(

(−
∑

t∈Ri

pt
i log pt

i + 1) +
∑

t/∈Ri

pt
iε

−1(− log pt
i + 1)

)

= O
(

ε−1(−
∑

t

pt
i log pt

i + 1)
)

= O
(

ε−1(HV
i + 1)

)

The total expected search time is O(ε−1(
∑

i HV
i + n)). By the analysis of Section 2 and Theorem 3.1, we

have that the expected running time in the limiting phase is O(ε−1(H(D)+n)). This completes the proof
of Theorem 1.1.

References

[1] Ailon, N., Chazelle, B., Comandur, S., Liu, D., Self-Improving Algorithms, Proc. 17th SODA (2006), 261–270.

[2] Aggarwal, A., Guibas, L., Saxe, J., Shor, P., A Linear Time Algorithm for Computing the Voronoi Diagram

of a Convex Polygon, Discrete and Computational Geometry 4, 1989, 591–604.

[3] Arya, S., Malamatos, T., Mount, D. M., Wong, K.-C. Optimal Expected-Case Planar Point Location, SIAM J.
Comput. 37, 2007, 584–610

[4] Chazelle, B., An Optimal Algorithm for Intersecting Three-Dimensional Convex Polyhedra, SIAM J. Computing
21, 1992, 671–696.

[5] Chazelle, B., Devillers, O.,Hurtado, F., Mora, M., Sacristan, V., Teillaud, M. Splitting a Delaunay Triangula-

tion in Linear Time, Algorithmica 34, 2002, 39–46.

[6] Clarkson, K., Varadarajan, K. Improved Approximation Algorithms for Geometric Set Cover Discrete and
Computation Geometry 37, 2007, 43–58.

[7] Matousek, J., Seidel, R., Welzl, E. How to Net a Lot with Little: Small epsilon-Nets for Disks and Halfspaces,
Proc. 6th SOCG (1990), 16–22.

10

A Proofs for Section 2.2

t

e xi

yt′

Figure 1:

Proof: (Claim 2.6) The edge e must be an edge in T (V). Also, e is an edge of triangle t in T (Vi−1).
Refer to Figure 1. The point xi is in the sector bounded by Ct and e. Since e ∈ T (V), there must be a
point y ∈ V such that e and y form a triangle t′ of T (V) and xi and y are on the same side of e. The
point y cannot be inside Ct, since t is a Delaunay triangle of T (Vi−1). Therefore, the angle subtended by
y at e is smaller than that of xi. The circle Ct′ must contain xi and t′ ∈ Si. 2

Proof: (Claim 2.7) Suppose some edge e in triangle t ∈ T (Vi−1) is killed by xi. We will denote the
vertices of t by u1, u2, and u3, and for ease of notation, we will denote xi by u4. The point xi is inside
Ct. Consider the set of edges of T (V) that intersect Ct. We can impose a natural linear ordering on these
edges. If none of these edges separate the set points U = {u1, · · · , u4}, then they all lie in a triangle t of
T (V).

C

Ctf

f ′

Figure 2:

Consider the first edge f that separates U into Uℓ and Ur. Refer to Figure 2. Assume that the next
edge after f to the right (in the ordering) that intersects Ct does not separate U . Let the two triangles of
T (V) that share f as an edge be tℓ, tr (the left and right triangles). The triangle tr contains Ur. Let C
be the circle tangential to C at the left of f and having f as a chord. (Note that if f is actually an edge
of t, then Ct and C are just the same, and we will end up with Claim 2.6.) If the vertex of tℓ not on f
lies outside C, then Ctℓ

will contain all of Ct which lies to the left of f . This implies that Ctℓ
contains

Uℓ. The situation is as follows: triangles tℓ and tr in T (V) share edge f . Edge f divides U into Uℓ and
Ur and they are contained in Ctℓ

and Ctr
, respectively, proving the claim (for this case).

Suppose the third vertex of tℓ is inside C. The triangle tℓ is shown by the dashed triangle in Figure 2
to the left of f . Let the angle to f be θℓ. Let the angle subtended by any point in the right part of Ct be
θr. Note that θℓ + θr > π. Therefore, the circle Ctℓ

will contain the right part of Ct (and, as a result, Ur).

11

The edge f ′ is in T (V) and intersects Ct. Also, f ′ is larger than f in the ordering of edges. If f ′ does
not separate U , then Ctℓ

must contain Uℓ and we are done. If not, then suppose f ′ divides U into U ′
ℓ

and U ′
r. The triangle tℓ is actually to the right of f ′ and Ctℓ

contains U ′
r. This leaves us in a situation

analogous to f : the circumcircle of triangle to the right of f ′ contains all points in U to the right of f ′.
Therefore, we can apply the same argument as above: either we will stop, getting our desired triangles,
or we will move to the edge to the right of f ′. 2

B Proof for Lemma 3.5

Proof: (Lemma 3.5) We will prove by induction on k that H(w1, · · · , wk) ≥
∑k

i=1 E[Hi]. Recall that wk

is the triangle of T (Vk−1) that contains xk. The claim is a consequence of the independence of the xi’s.
The reason why we cannot immediately use independence is that the random variable wi does depend on
the choices of x1, · · · , xk−1, because wk depends on T (Vk−1), which depends on x1, · · · , xk−1. In some
sense, we are just stating a well known fact about conditional entropies, but this small technical problem
forces us to reprove it for our setting. We proceed with a proof by induction.

base case: For k = 1, H(w1) = H1 (note that H1 is not a random variable).
induction step: Assume the claim is true up to k − 1. For any triangle t (which is specified by a triple

of vertex labels), let p(i, t) be the probability that xi falls in t. Suppose that x1, · · · , xk−1 are fixed. We
have

Hk+1 = −
∑

t∈T (Vk−1)

p(k, t) log p(k, t).

Let γ(k−1, t) be the indicator variable of the event that T (Vk−1) has triangle t. This is a random variable,
depending on x1, · · · , xk−1. Removing the assumption that x1, · · · , xk−1 are fixed, we take the expectation
of Hk:

E[Hk] = −E[
∑

t

γ(k − 1, t)p(k, t) log p(k, t)]

= −
∑

t

E[γ(k − 1, t)]p(k, t) log p(k, t)

Consider some sequence of triangles ∆k = 〈t1, · · · , tk〉. For i ≤ k, let Ei(∆) denote the event that
w1 = t1, w2 = t2, · · · , wi−1 = ti−1.

Pr[Ek(∆k)] = Pr[Ek−1(∆k)] × Pr[wk = tk
∣

∣Ek−1(∆k)]

= Pr[Ek−1(∆k)]

× p(k, tk)Pr[γ(k − 1, tk) = 1
∣

∣Ek−1(∆k)].

This is just a consequence of the independence of xk from x1, · · · , xk−1. As a result, the probability
p(k, tk) is not affected by the values of w1, · · · , wk−1. Note also that Pr[wk = tk

∣

∣Ek−1(∆k)] = Pr[wk =

tk
∣

∣Ek−1(∆k−1)]. Taking the convention that 0 log 0 = 0, we can now express as a sum the entropy
H(w1, · · · , wk).

H(w1, · · · , wk)

= −
∑

∆k

Pr[Ek(∆k)] log Pr[Ek(∆k)]

= −
∑

∆k

Pr[Ek(∆k)] log(Pr[Ek−1(∆k)]

× p(k, tk)Pr[γ(k − 1, tk) = 1
∣

∣Ek−1(∆)])

= −
∑

∆k

Pr[Ek(∆k)](

log(Pr[Ek−1(∆k)])

+ log p(k, tk)

+ log(Pr[γ(k − 1, tk) = 1
∣

∣Ek−1(∆)]))

12

We now open the parentheses and consider each sum separately.

−
∑

∆k

Pr[Ek(∆k)] log(Pr[Ek−1(∆k)])

= −
∑

∆k

log(Pr[Ek−1(∆k)])Pr[Ek−1(∆k)]

× Pr[wk = tk
∣

∣Ek−1(∆k−1)]

= −
∑

∆k−1,tk

log(Pr[Ek−1(∆k−1)])Pr[Ek−1(∆k−1)]

× Pr[wk = tk
∣

∣Ek−1(∆k−1)]

= −
∑

∆k−1

Pr[Ek−1(∆k−1)] log(Pr[Ek−1(∆k−1)])

×
∑

tk

Pr[wk = tk
∣

∣Ek−1(∆k−1)]

= −
∑

∆k−1

Pr[Ek−1(∆k−1)] log(Pr[Ek−1(∆k−1)]) × 1

= H(w1, · · · , wk−1).

13

Now consider the next sum in a similar manner:

−
∑

∆k

log p(k, tk)Pr[Ek−1(∆k)]

× p(k, tk)Pr[γ(k − 1, tk) = 1
∣

∣Ek−1(∆k)]

= −
∑

tk

p(k, tk) log p(k, tk)
∑

∆k−1

Pr[Ek−1(∆k−1)]

× Pr[γ(k − 1, tk) = 1
∣

∣Ek−1(∆k−1)]

= −
∑

tk

p(k, tk) log p(k, tk)
∑

∆k−1

Pr[γ(k − 1, tk) = 1]

= −
∑

tk

E[γ(k − 1, tk)]p(k, tk) log p(k, tk) = E[Hk]

The third sum is always positive. This implies that

H(w1, · · · , wk) ≥ H(w1, · · · , wk−1) + E[Hk] ≥

k
∑

i=1

E[Hi].

2

14

