
Randomized Parallel Algorithms

for

Trapezoidal Diagrams

Ken Clarkson Richard Cole Robert E. Tarjan

AT&T Bell Labs Courant Inst. Princeton Univ.,

Murray Hill, NJ New York Univ. NEC Research Inst.

1

Outline

• Trapezoidal Diagrams

• Results

• Ideas

• Conclusions

2

Trapezoidal Diagrams

Given set S of

n line segments, with

A intersection points,

its TD T (S) has Θ(n + A) regions.

3

Results

Suppose S forms K known chains.

How much work is needed to find T (S),

and how quickly can the diagram be found?

work time/ lgn

Ω(K lgn + A +n) Ω(1)
K lgn + A +n lg∗ n lg lgn lg∗ n

A +n lgn 1
n lg lgn lg∗ n simple

n • simple; C
n lg∗ n • CTVW,S

n2 1 HJW
n2 lg∗ n AM, (G)

A lgn +n lg2 n 1 Goodrich
A +n lgn 1 red/blue; GSG

4

The Model

Expected work and worst-case time

implies processors are expected?

CREW PRAM,

processor allocation every logn steps

5

Randomized divide-and-conquer [CS]:

• take R ⊂ S random of size r;

• compute T (R);

• for T ∈ T (R), find segments ST meeting it

(insertion);

• compute T ∩ T (ST) for T ∈ T (R);

• merge pieces to find T (S);

6

We can use “slow” algorithms

for T (R) and the T ∩ T (ST), since:

Each trapezoid meets

O(n/r) segments, on average, and

O(n/r) log r with high probability.

For parallel work O(A + n logn),

use Goodrich’s algorithm to compute T (R),

and a quadratic algorithm like [HJW] for sub-

problems.

7

Serially, for simple chains:

to insert, walk through T (R) and S;

This gives O(n log logn) expected time,

with r = n/ logn and average subproblem size

O(logn).

For O(n log∗ n) work:

For subsets

S1 ⊂ S2 ⊂ · · · ⊂ Slog∗ n = S,

with |S1| = n/ logn, |S2| = n/ log logn,

|Si| = n/ log(i) n,

compute T (Si) using T (Si−1).

8

In parallel, the insertion is done by

many parallel walks through subchains.

The main problem: while every trapezoid of

T (R) meets few segments,

a segment may meet many trapezoids.

How to handle bad segments

that meet Ω(logn) trapezoids?

There are O(n/ logn) bad segments,

on average: to insert them,

compute their intersections

with the visibility edges using algorithm [GSG].

9

Conclusions

• realistic machine models;

• determinism;

• simple O(n) triangulation?

10

