Random projection almost always preserves Hausdorff dimension
`\lim_ {\epsilon \rightarrow 0 } C (\epsilon) \epsilon^t = \lim_ {\epsilon \rightarrow 0 } { \epsilon^{t - d_C + o(1)} }`
`\inf_{ E \text{ an } \epsilon \text{-cover} } \sum_{B \in E} {\diam (B)^t} `