On the Expected Number of k-sets of Coordinate-Wise Independent Points

Kenneth L. Clarkson

Abstract

Let S be a set of n points in d dimensions. A k-set of S is a subset of size k that is the intersection of S with some open halfspace. This note shows that if the points of S are random, with a coordinate-wise independent distribution, then the expected number of k-sets of S is $O((k\log(cn/k))^{d-1})2^d/(d-1)!$, as $k\log n \to \infty$, with a constant independent of the dimension.

1 Introduction

For a set S of n points in \mathbb{R}^d, a k-set of S is a subset of size k of the form $P \cap S$, where P is an open halfspace. It is a long-standing puzzle to bound the maximum number of k-sets that some set can have. Results on this problem go back to Lovász and Erdős et al. [Lov71, ELSS73]; the best known upper bound $O(nk^{1/3})$ in the plane is due to Dey [Dey98], while the best upper bound for $d = 3$ is $O(nk^{3/2})$ [SST01], and for $d > 3$ is $O(n^{d-\epsilon_d})$. [vV92] where $\epsilon_d > 0$. The best lower bound $n^{d-1}\epsilon(\sqrt{\log d})$ is due to Tóth [Tot01].

It is tempting to speculate that the truth is closer to the lower bound. The fact that the total number of j-sets, for $j \leq k$, is no more than $O(n^{(d/2)k^{(d/2)}})$, [AG86, CS89] is suggestive in this regard: dividing this bound by k, the “average” number of j-sets, for random $j \leq k$, is $O(n^{(d/2)k^{(d/2)-1}})$. There are also tighter results for a restricted class of well-separated, so-called dense point sets. [EVW97]

There are a few results known for random sets; these results are close to, or below, the worst-case lower bound. Here “random” means that the points are independently, identically distributed random variables, with a distribution that may have some additional properties. Bárány and Steiger showed, among other results, that if the distribution is spherically symmetric, then the expected number of $n/2$-sets is $O(n^{d-1})$, with a constant dependent on d. [BS94] They also showed a bound of $O(n)$ for points uniform in a convex body in the plane.

*Bell Labs; 600 Mountain Avenue; Murray Hill, New Jersey 07974; clarkson@research.bell-labs.com
Here we consider random points which have a distribution with the coordinate-wise independence property, defined below. For such pointsets, we use well-known results about the k-set polytope, and use its relation to k-sets, and well-known results regarding coordinate-wise maxima, to prove a tight bound on the expected number of k-sets.

The bound overlaps with Bárány and Steiger’s results to some extent: planar points uniform in a rectangle are coordinate-wise independent, and a multivariate normal distribution is both spherically symmetric and coordinate-wise independent.

2 Coordinate-wise independence

Let $X_1, X_2 \ldots X_d$ denote the n-vectors of coordinates of S. Write the density function of the nd coordinates of S as $f(X_1, X_2 \ldots X_d)$, and let the marginal density function of X_i be $f_i(X_i)$. Say that S is coordinate-wise independent if:

1. Each function $f_i(X_i)$ is symmetric in the n coordinates of X_i;
2. The density functions satisfy $f(X_1, \ldots , X_d) = \prod f_i(X_i)$.

(A similar definition, with similar results, can be made for discrete distributions.)

Note that condition 1 is satisfied if the points of S are independently, identically distributed. This definition generalizes slightly from that case, because results known to hold for i.i.d. points will be needed for pointsets satisfying this broader condition.

This general definition can include a case where all points have the same x_1 coordinate.

3 Maxima and extreme points

Given a vector $v = (v_1, \ldots , v_d)$ with each entry ± 1, say that a point $p \in S$ is a v-maximum if, for all $p' \in S$ and all $i = 1, \ldots , d$, $p_i v_i \geq p'_i v_i$. If v is understood, we may just say that p is a maximum. Say that p is a coordinate extremum if it is a v-maximum for some v. The following is well-known.

Lemma 3.1 Every extreme point (convex hull vertex) of S is a coordinate extremum of S.

Proof: (Sketch) Suppose $x \in S$ is not a coordinate extremum. Then every quadrant about x contains a point of S. Call that collection of points T. It is easy to show by induction on dimension that x is a convex combination of the points of T, which implies that x is not an extreme point of S.

That is, the number of coordinate extrema is an upper bound on the number of extreme points.

Let $\mathcal{M}(S)$ denote the v-maxima of S, for $v = (1, \ldots , 1)$.

2
Lemma 3.2 If S is coordinate-wise independent, then for any given v, the probability that the first point p_1 in S is a v-maximum is $E[|\mathcal{M}(S)|]/n$.

Proof: Let I_k be an indicator function that is 1 when p_k is a maximum, and zero otherwise. Since the density function is symmetric, all orderings of the points are equally likely, and so the probability that p_1 is a maximum is equal to $\sum_k E[I_k]/n = E[|\mathcal{M}(S)|]/n$, as claimed, by linearity of expectation.

Theorem 3.3 If S is coordinate-wise independent, then for any given v, the expected number of v-maxima is

$$\frac{H_{n-1}^d}{(d-1)!} (1 + O(d/\log n)) = O(\log^{d-1} n)/(d-1)!$$

as $n \to \infty$. Here $H_n \equiv \sum_{1 \leq i \leq n} 1/i = \log n + \gamma$, where γ is Euler’s constant.

The asymptotic result is due to Bentley et al. [BKST78]; A simplified proof and tighter bound was given by Buchta [Buc89]. These proofs were for i.i.d. points, but would probably apply in the more general setting needed here; even so, yet another proof follows.

Proof: We consider only $v = (1, \ldots, 1)$; the other cases are similar. Order the n points by increasing x_1 coordinate; let p_k denote the k’th point in the list. For $p = (x_1, \ldots, x_d)$, let $P_1(p)$ denote the point (x_2, \ldots, x_d). Then p_k is a maximum if and only if $P_1(p_k) \in \mathcal{M}(Q_k)$, where

$$Q_k \equiv \{P_1(p_i) \mid i \geq k\}.$$

Let I_k denote the event that p_k is a maximum; that is, $I_k = 1$ when the k’th point in the list is a maximum. We have

$$E[|\mathcal{M}(S)|] = E[\sum_k I_k] = \sum_k E[I_k] = \sum_k \text{Prob}(P_1(p_k) \in \mathcal{M}(Q_k)).$$

Since S is coordinate-wise independent, the distribution of Q_k is also coordinate-wise independent. Therefore, the probability that $P_1(p_k) \in \mathcal{M}(Q_k)$ is $E[|\mathcal{M}(Q_k)|]/k$, by the lemma just above. Letting $T(n, d)$ be the expected number of maxima of n coordinate-wise independent points in d dimensions, we have

$$T(n, d) = \sum_{k \leq n} T(k, d-1)/k,$$

with $T(n, 1) = T(1, d) = 1$ for all n and d. Expanding in d, the solution to this recurrence is

$$T(n, d) = \sum_{j_2 \leq n} \frac{1}{j_2} T(j_2, d-1) = \sum_{j_2 \leq n} \frac{1}{j_2} \sum_{j_3 \leq j_2} \frac{1}{j_3} T(j_3, d-2) = \sum_{1 \leq j_d \leq j_{d-1} \cdots \leq j_2 \leq n} \prod_{i=2}^d \frac{1}{j_i}.$$

As shown by Buchta [Buc89], this quantity is $\frac{H_{n-1}^d}{(d-1)!} (1 + O(d/\log n))$, as claimed.
A way to verify the claim is to observe that the solution sum is symmetric in j_2, \ldots, j_d, and adding up $(d-1)!$ copies gives an unrestricted sum over the j_i's, that is, H_n^{d-1}, plus some lower-order terms.

Note that $T(n, d)$ satisfies the recurrence

$$T(n, d) = T(n, d - 1) + T(n - 1, d) / n.$$

Plugging in the given bound also verifies the claim. This recurrence was studied by Roman [Rom92], who showed that the solution can be expressed by a rather different sum:

$$T(n, d + 1) = \sum_{1 \leq i \leq n} \binom{n}{i} (-1)^{i-1} i^{-d}.$$

4 The main result

Theorem 4.1 If S is coordinate-wise independent, then the expected number of k-sets of S is

$$O((k \log(en/k))^{d-1})2^d / (d-1)!$$

as $k \log n/k \to \infty$, with a constant independent of the dimension.

Proof: Let $V_k(S)$ denote the set

$$\{ \sum_{p \in T} |T \subset S, |T| = k \}.$$

It is a well-known fact that the extreme points of $V_k(S)$ are in one-to-one correspondence with the k-sets of S (See, for example, [EVW97]). The convex hull of $V_k(S)$ is called the k-set polytope of S. Note that $V_k(S)$ has $N \equiv \binom{n}{k} \leq (en/k)^k$ points. Since S is coordinate-wise independent, so also is $V_k(S)$. (The alert reader will notice that the points of $V_k(S)$ are not i.i.d., however.) So the expected number of maxima of $V_k(S)$ is

$$\frac{H_n^{d-1}}{(d-1)!} (1+O(d/ \log N)) = O(\log N)^{d-1}/(d-1)! = O((k \log(en/k))^{d-1})/(d-1)!.$$

From Lemma 3.1, the number of extreme points of $V_k(S)$ is at most 2^d times this value, which also bounds the number of k-sets by the correspondence just mentioned.
References

